翻訳と辞書 |
Von Neumann's theorem : ウィキペディア英語版 | Von Neumann's theorem In mathematics, von Neumann's theorem is a result in the operator theory of linear operators on Hilbert spaces. ==Statement of the theorem==
Let ''G'' and ''H'' be Hilbert spaces, and let ''T'' : dom(''T'') ⊆ ''G'' → ''H'' be an unbounded operator from ''G'' into ''H''. Suppose that ''T'' is a closed operator and that ''T'' is densely defined, i.e. dom(''T'') is dense in ''G''. Let ''T''∗ : dom(''T''∗) ⊆ ''H'' → ''G'' denote the adjoint of ''T''. Then ''T''∗''T'' is also densely defined, and it is self-adjoint. That is, : and the operators on the right- and left-hand sides have the same dense domain in ''G''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Von Neumann's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|